
Geant4 Beginner Course Material

Mihály Novák
CERN EP-SFT

version: 0.0.1 (Geant4-11.00)

May 9, 2022

Table of contents

I Course Material 2

1 Introduction 2
1.1 What is Geant4? . 2
1.2 Our goal in the next few days . 2
1.3 Format . 3

2 Preliminaries 4
2.1 Our most important object oriented concept: interface . 4
2.2 Some useful unix commands . 8
2.3 Geant4 installation . 8
2.4 Some notes on the Virtual Machine . 14
2.5 Some notes on using CMake . 17

II Application Documentation 22

3 C++ interface demonstrator 22

4 Introduction 23

5 Application description 24

6 Code documentation of yourMainApplication of the application 24
6.1 Code documentation: yourMainApplication . 24

7 Code documentation of YourDetectorConstruction of the application 24
7.1 The YourDetectorConstruction class . 24

8 Code documentation of the user action part of the application 25
8.1 The mandatory interface implementations . 25
8.2 Some of the optional interface implementations . 27

9 Bibliography 30

10 Indices and tables 31

Index 32

Tutorial on Geant4 for users interested to begin or improve their usage of the Geant4 particle transport simulation
toolkit. Appropriate for creating simulation applications in any domain, with emphasis on topics most relevant to
experiments in High Energy or Nuclear Physics. This material was prepared for an interactive hands-on based tutorial
course interspersed by lectures providing the necessary background information for building a progressively more
complex application from scratch extensible to real use.

The course is expected to be of interest to novices and those with basic or partial familiarity with Geant4. Participants
are expected to have a reasonable knowledge of C++.

1

https://geant4.web.cern.ch/
https://geant4.web.cern.ch/

Part I

Course Material

1 Introduction

1.1 What is Geant4?

Geant4 is an open source toolkit for developing applications that simulates the passage of particles through matter. It
is very important to understand the difference between being a toolkit or a concrete simulation application with a main
program. Geant4 as a toolkit provides all the necessary components that are needed to describe and to solve particle
transport simulation problems.

A concrete simulation problem, with its own unique geometrical, material configurations, physics modelling setting
etc., can be described by using these components eventually leading to a given simulation application with a main
program. After the description of a unique simulation problem is given, Geant4 as a toolkit also provides the solution
of the underlying particle transport modelling problem. The Monte Carlo method is utilised by Geant4 to solve the
related transport equations taking into account the geometrical, physics, etc. constraints provided by the toolkit based
description of the application. This eventually leads to a setp-by-step computation of the particle transport through the
given geometry (hence the name GEometry ANd Traking), where each of the step is limited by either a geometry (e.g.
volume boundary) or a physics (e.g. bremsstrahlung photon emission of an 𝑒−) related constraint. Several interaction
points are provided for the users during this solution process for collecting and propagating information over a wide
range of granularity: from the smallest, i.e. individual step level up to a complete run.

It is important to recognise, that different particle transport modelling problems require different descriptions (e.g.
different geometry, physics configuration, etc.) while the solution of the transport problem itself as well as the possible
user interaction points are generic, i.e. independent from the details of the concrete problem. This is achieved by
Geant4 through providing carefully designed interfaces both for the description of the simulation problem as well as
for the user interactions (e.g. for the detector geometry description). These interfaces decouples or abstracts away the
concrete implementation of the related components (e.g. the concrete detector geometry) from the solution algorithm
while ensures that the required functionalities and information are supplied.

1.2 Our goal in the next few days

Geant4 toolkit developers work directory on the toolkit continuously extending and improving its modelling, descrip-
tion, etc. functionalities. Geant4 application developers work on developing simulation applications by describing
a well defined particle transport simulation problem and configuration making use of the available functionalities of
the toolkit. These simulation applications can then be utilised by any users to obtain the results of the related simu-
lation problem, usually with some possible further configuration options made available by the application developer
(e.g. primary particle type and/or energy). The toolkit developers also provides example application that very often
demonstrate a particular functionality of the toolkit. These example applications are also provided by toolkit.

Our goal is to make the very first steps in the next few days on the way to become a Geant4 application developer.
In order to do so, you will become familiar with the most important building blocks provided by the Geant4 toolkit to
describe any particle transport simulation problem. These definitely include the so-called mandatory as well as some of

2

the optional components. While the mandatory components, such as the detector description, physics configuration,
primary generator are essentially needed to define a particular simulation problem, the optional components provide
the possibility to collect all the required information during the solution of the simulation problem.

1.3 Format

As mentioned above, Geant4 application development requires the implementation of (at least the mandatory) C++
interfaces provided by the toolkit to define the particular simulation problem. As in most cases of programming,
implementing example applications, with steadily increasing complexity while acquiring the theoretical background
information required by the next step, provides an efficient way to reach a confident level of experience. This tutorial was
designed along this experience as well. Therefore, we will implement a concrete particle transport simulation problem
together from scratch in a step-by-step way. Each implementation step will be preceded by a detailed explanation of the
required related theoretical background. A relatively simple simulation problem was selected in order to keep focusing
on a generic Geant4 application structure with a clear understanding of the role of the most important components and
their relations instead of diving deep in one particular direction. In spite of it simplicity, our target application problem
represents very well the structure of a generic Geant4 application. Therefore, the format and content of the tutorial
provide the opportunity for acquiring rather confident basic Geant4 application developer skills.

During this process, we will heavily rely on information supplied by the Geant4 Book For Application Developers
completed by the source code inspection of the related interfaces and other toolkit component implementations.

Take-home

Geant4 is a toolkit which means that provides the building blocks to describe your particle transport problems, then the
generic solution of the transport problem using the Monet Carlo method. Toolkit developers extends the description,
modelling, etc. functionalities of the toolkit while application developers provides final simulation applications based
on the toolkit that can be utilised by the users.

Tip: The example applications, provided by the toolkit developers as part of the toolkit itself, serve as a good starting
point for developing your own application. Try to find the closest to your needs, use it as a starting point and modify,
extend according to your own modelling problem.

What’s next?

Before starting to implement our target simulation problem, the next section ensures that we are all on the same (or at
least similar) page regarding some technical details: understanding of some key C++ object oriented concepts such as
interfaces, becoming familiar with our local Geant4 implementation and CMake build system, etc.

Bals lashd

Let’s cite something from the application doxygen documentation here e.g. the first the section of the final appli-
cation description (not doxygen) final application then now the doxygen documentation of the detector construction
YourDetectorConstruction

Here I use a link to a Geant4 file that is on GitHub G4Electron.hh then I use a G4 class name G4ClassNames

file names: ../fname

environment variables: G4INSTALL

G4ClassNames

Geant4

3

https://geant4-userdoc.web.cern.ch/UsersGuides/ForApplicationDeveloper/html/index.html
https://github.com/Geant4/geant4/blob/geant4-11.0-release/source/particles/leptons/include/G4Electron.hh

#include "G4Something.hh"

int main() {

std::cout << " Someting " << std::endl;
return 0;

}

2 Preliminaries

Some of the most important elements of the technical environment will be review very briefly in this section before
moving to Geant4. This will include a brief recap of the most relevant (C++) object oriented(OO) concepts such as
interface or a quick view on the Geant4 toolkit installation. We will get familiar with the Virtual Machine(VM)
environment that will be used during the tutorial while we will understand how the CMake build system makes our life
easier. These are all essential technical elements that we will heavily rely on during this course.

2.1 Our most important object oriented concept: interface

Geant4 provides the solution to particle transport simulation problems independently form the details by abstracting
them away. It has already been mentioned in the Introduction, that this could be achieved by carefully designed inter-
faces that a concrete application needs to implement. Since the simulation problem is actually defined by implementing
a set of Geant4 interfaces, a clear understanding of how this object oriented concept works is essential for the rest of
the course.

Interface is a very important object oriented concept that captures some of the important commonalities (behaviour,
ability, etc.) of different type of objects into a common base. This common base doesn’t know anything about the
details of the common behaviour in a particular type of object, just serves as a blueprint for the different types. Then
the different types take this blueprint and implement their own particular way of that common behaviour. Note, that it
also ensures that all the different types that implements a common base/blueprint, for sure has that common behaviour
or ability.

As a simple example, suppose that we are developing a solution algorithm that at a given point requires the sum area
of all the 2D shapes that the user defines as part of the input (I know. . . but keep it simple.). So the sub-problem is the
area computation of different 2D shapes. We know that each 2D shape has an area (the commonality) but the way of
its computation depends on the actual shape (different types). So one might define a common base for all the 2D shapes
that contains the common ability of providing the area computation ability without implementing anything. Then the
individual shape types takes this common base and implements their way of area computation. So eventually, the
common functionality is only defined in the base but implemented in the concrete types. Therefore, our base serves
as an interface for 2D shape area computation. Also note, that all the possible different shape types can implement our
interface, even those that we do not know. Therefore, using an interface decouples the solution from the details (i.e.
the actual area computation) and the remaining part of algorithm can be completed without knowing all the details.

Different object oriented languages offer slightly different syntax for implemented such interfaces. In C++ the blueprint,
that contains the definitions of the common abilities as pure virtual method definitions, is usually an abstract base
class. The concrete types are derived then from this common base and implements the pure virtual methods of the
base class. A method is declared to be pure virtual if it do not contain any implementation that achieved by the =
0; syntax. A class is called abstract class if it has at least one pure virtual method. Note, that it is not possible to
instantiate objects from an abstract class simply because they have at least one unimplemented method (the pure
virtual).

4

As an example, the following shows a possible implementation of the above 2D shape area computation interface.
While the whole abstract VShape2D base class is shown, please note the pure virtual VShape2D::Area() method
declaration. The complete working example is available under applications/preliminaries/cpp-interface.

// This is called "include guard": used to avoid double inclusion that would
// lead to double definition. Very good practice, check it and use.
#ifndef VSHAPE2D_HH
#define VSHAPE2D_HH

#include <string>

/**
* @file VShape2D.hh
* @class VShape2D
* @author M. Novak
* @date May 2022
*
* **Interface**, i.e. base class with a **pure virtual** method, for 2D
* shape area computations.
*
* This base class is an **interface** for 2D shape area computations. It has its
* **pure virtual** Area() method. Therefore, this method **must be implemented
* by each derived** classes. This ensures, that whatever type of an actuall 2D
* shape is (derived from this base class) the Area() interface method will be
* available. Therefore, the rest of the code can be developed without knowing
* what 2D shapes will be eventually there: they will be all `VShape2D` types
* providing their own implementation of the Area() interface method defined
* in this base class.
*
* Note, that the **pure virtual** method makes this base class **abstract**,
* i.e. objects cannot be instantiated directly form this base class.
*/

// The `VShape2D` base class definition.
class VShape2D {

public:

// constructor: requires the name of the shape
VShape2D(const std::string& name) : fName(name) { }
// destructor: no dynamic memory allocation so nothing to do
virtual ~VShape2D() { }

// public method to get the name: short so we implement here
const std::string& GetName() const { return fName; }

/**
* The area computation *interface* method.
*
* Example of a **pure virtual** method that makes this base class **abstract**.
*
* Each 2D shape has an area but all computed differently depending on the
* actual type of the shape. This is why it's a **pure virtual method**, i.e.

(continues on next page)

5

(continued from previous page)

* **each derived class must implement**.
*/
virtual double Area() = 0;

/**
* *Optional* perimeter computation method.
*
* Example of a **virtual** method with defult implementation in the base class.
*
* Each 2D shape has its own way of computing the perimeter just like the area.
* However, we decided that actually the perimeter is not important for our
* algorithm in most cases of shapes. Therefore, this default implementation
* is available for each derived class and will be invoked unless the concrete
* derived class provides its own implementation. The derived `Square` class
* implements this method while `Circle` relyes on this defult base class
* implementation.
*/
virtual double Perimeter() { return 0.0; }

private:

// name of the shape
std::string fName;

};

#endif // VSHAPE2D_HH

And a possible implementation of the concrete Square class that implements the area computation interface for the
concrete square shape type. Technically it means that the Square class is derived from the VShape2D abstract base
and implements its pure virtual interface method.

#ifndef SQUARE_HH
#define SQUARE_HH

// inlcude the base class definition
#include "VShape2D.hh"

/**
* @file Square.hh
* @class Square
* @author M. Novak
* @date May 2022
*
* @brief Derived class that implements the VShape2D interface for Square-s.
*/

// square is a derived from the 2D shape base class
class Square : public VShape2D {

public:
(continues on next page)

6

(continued from previous page)

// constructor: requires the length of the side
// - it calls the base class constructor by passing the required name
Square(double lside) : VShape2D("mySquare"), fSideLength(lside) { }

// no dynamic memeory allocation so nothing to do at destruction
~Square() { }

/**
* Actual implementation of the area computation interface method of the
* base class.
*
* Square **must implement** the VShape2D::Area base class method since that's
* a **pure virtual method**.
*
* @note The `override` keyword is very useful: indicates that this method
* implements a virtual method of the base class so the compiler is
* aware of that intention.
*/
double Area() override { return fSideLength*fSideLength; }

/** The **optional** `Perimeter` interface method implementation. */
double Perimeter() override { return 4.0*fSideLength; }

private:

// the only data member is the length of the edge
double fSideLength;

};

#endif // SQUARE_HH

Also note, that the VShape2D base class has an other virtual method, the VShape2D::Perimeter() that actually has an
implementation in the base class so this method is not pure virtual. Since this method already has an implementation
in the base class, the derived classes might optionally provide their own implementation of this method or not at all.
The default implementation, i.e. the one in the base class will be used in the later case.

Tip: The above dynamic or run-time polymorphism, i.e. the run-time resolution of function calls, is achieved in
C++ through the combination of inheritance and virtual methods. From the computing performance point of view, in
some cases it might be beneficial to make this resolution at compile time. Static or compile time polymorphism can
be achieved by the template metaprogramming based Curiously Recurring Template Pattern (CRTP) C++ construct.

7

2.2 Some useful unix commands

It might be useful to refresh some of the most important unix commands since we will work in the terminal. This can
also be used during the course as a cheat sheet.

Command Meaning / effect
ls list files in the current directly
ls -l same as above in long format (more details)
. the current working directory
.. parent directory
~ home directly
cp file1 file2 copy file1 to file2
mv file1 file2 move/rename file1 to file2
rm file remove/delete file
pwd print working directory (Where am I?)ß
cd dirname change to dirname directory (e.g. change to your home directory cd ~)
mkdir dirname make directory with the name dirname
rmdir dirname remove/delete directory with the name dirname
rmdir -r dirname removes even sub-directories recursively
cat file show the content of file
more file shows the file page by page
ctrl + C interrupts the running process
echo string write out the string (e.g. write out the value of a shell variable like PATH as echo $PATH)
$ use the $ prefix front of shell variables to get their value (e.g. above)

2.3 Geant4 installation

Building and installing Geant4 from source will be shown very briefly in this section. This will be the standard way of
using the Geant4 toolkit when you become an experienced Geant4 application developer (hopefully after this course).
Moreover, this will also help to understand better why we decided to use the common Virtual Machine(VM) version
for this course.

While all the details regarding the installation of the Geant4 toolkit can be found in the Installation Guide, we will focus
here only building and installing from source on unix system. Note, that certain softwares/libraries must be installed
on your system in order to be able to build and/or use Geant4. These are listed in the System/Software Prerequisites
section of the Installation Guide.

Obtain the source

The first step is to obtain the source code of the Geant4 toolkit that can be downloaded from Downloads (see the
screenshot in Fig. 2.1).

It will be assumed in the following that the Geant4 source code has been downloaded to the G4DOWNLOAD directory.
After moving to this directory we can see the following when we list the content with the ls command:

bash-3.2$ ls
geant4-v11.0.1.tar.gz

Then we can uncompress the source code by:

bash-3.2$ tar -xzvf geant4-v11.0.1.tar.gz
x geant4-v11.0.1/

(continues on next page)

8

https://geant4-userdoc.web.cern.ch/UsersGuides/InstallationGuide/html/
https://geant4-userdoc.web.cern.ch/UsersGuides/InstallationGuide/html/installguide.html
https://geant4-userdoc.web.cern.ch/UsersGuides/InstallationGuide/html/gettingstarted.html
https://geant4-userdoc.web.cern.ch/UsersGuides/InstallationGuide/html/
https://geant4.web.cern.ch/support/download

Fig. 2.1: Geant4 page screen shot for downloading the toolkit source code

(continued from previous page)

x geant4-v11.0.1/.github/
x geant4-v11.0.1/.github/CODEOWNERS
x geant4-v11.0.1/.gitignore
x geant4-v11.0.1/CMakeLists.txt
x geant4-v11.0.1/CONTRIBUTING.rst
x geant4-v11.0.1/LICENSE
x geant4-v11.0.1/README.rst
x geant4-v11.0.1/ReleaseNotes/
x geant4-v11.0.1/ReleaseNotes/Beta4.10.0-1.txt
x geant4-v11.0.1/ReleaseNotes/Beta4.10.1-1.txt
x geant4-v11.0.1/ReleaseNotes/Beta4.10.2-1.txt
x geant4-v11.0.1/ReleaseNotes/Beta4.10.3-1.txt
x geant4-v11.0.1/ReleaseNotes/Beta4.10.4-1.txt
...

that eventually will create a subdirectory in the G4DOWNLOAD directory containing all the source codes:

bash-3.2$ ls
geant4-v11.0.1 geant4-v11.0.1.tar.gz

It will be assumed in the following that the created subdirectory, with all the uncompressed Geant4 source code, is
G4SRC. This means G4SRC = full/path/to/geant4-v11.0.1 in the above example (please note, that you need to
replace /full/path/towith your actual path to the uncompressed source directory), that can be set as an environment
variable as:

bash-3.2$ export G4SRC=/full/path/to/geant4-v11.0.1

Then we can check if everything set properly by writing the value of the newly created environment variable as:

9

bash-3.2$ echo $G4SRC
/full/path/to/geant4-v11.0.1

and eventually move to the source code directory and list the content as:

bash-3.2$ cd $G4SRC
bash-3.2$ ls
CMakeLists.txt LICENSE ReleaseNotes config ␣
→˓ examples
CONTRIBUTING.rst README.rst cmake environments ␣
→˓ source

Configure, build and install

We will create a build subdirectory here that will be used then to store our build configuration and Makefiles
generated by using CMake (see some reasons later why we use it). So we crate the build subdirectory inside the G4SRC
and change to that:

bash-3.2$ mkdir $G4SRC/build
bash-3.2$ cd $G4SRC/build

Then we will use CMake to configure the build and generate the corresponding unix Makefiles. Note, that having the
appropriate version of CMake installed and available on your system is part of the Prerequisites for building and/or
using Geant4.

There are several configuration options to set how Geant4 is built, installed and what optional components of the toolkit
are enabled. Some of them are provided by CMake itself while there are several Geant4 specific configuration options.
All of them are listed and described in the Build Option section of the Installation Guide.

One very useful CMake option is CMAKE_INSTALL_PREFIX. This can be used to set the required installation lo-
cation. Suppose that we want to install Geant4 under a path/to/install/dir, that actually we also set to be
stored in a new environment variable G4INSTALL (by export-ing it similarly to G4SRC above), we can configure the
build as -DCMAKE_INSTALL_PREFIX=$G4INSTALL. An other, already Geant4 specific CMake configuration option,
is GEANT4_INSTALL_DATA with the possible values of ON/OFF(default). Turning this ON results in downloading
and installing all the datasets that Geant4 requires. Please note, that all the Geant4 configuration and build options
starts with the GEANT4_ prefix. Beyond the optional configuration options mentioned so far, CMake has a required
input argument. This is the top level CMakeLists.txt CMake input file location, that is usually located in the main
directory of the projects. In our case, this is the parent directory of our current $G4SRC/build. Therefore, configuring
our current Geant4 build from the $G4SRC/build subdirectory, such that we require

• to install the toolkit under $G4INSTALL : -DCMAKE_INSTALL_PREFIX=$G4INSTALL

• downloading and installing all Geant4 datasets: -DGEANT4_INSTALL_DATA=ON

can be down as:

bash-3.2$ cmake ../ -DCMAKE_INSTALL_PREFIX=$G4INSTALL -DGEANT4_INSTALL_DATA=ON
-- The C compiler identification is GNU 10.2.0
-- The CXX compiler identification is GNU 10.2.0
-- Checking whether C compiler has -isysroot
-- Checking whether C compiler has -isysroot - yes
-- Checking whether C compiler supports OSX deployment target flag
-- Checking whether C compiler supports OSX deployment target flag - yes
-- Detecting C compiler ABI info

(continues on next page)

10

https://geant4-userdoc.web.cern.ch/UsersGuides/InstallationGuide/html/gettingstarted.html
https://geant4-userdoc.web.cern.ch/UsersGuides/InstallationGuide/html/installguide.html#geant4-build-options
https://geant4-userdoc.web.cern.ch/UsersGuides/InstallationGuide/html/

(continued from previous page)

-- Detecting C compiler ABI info - done

...

-- Found Threads: TRUE
-- The following Geant4 features are enabled:
CMAKE_CXX_STANDARD: Compiling against C++ Standard '17'
GEANT4_BUILD_MULTITHREADED: Build multithread enabled libraries
GEANT4_BUILD_TLS_MODEL: Building with TLS model 'initial-exec'
GEANT4_USE_SYSTEM_EXPAT: Using system EXPAT library

-- Configuring done
-- Generating done
-- Build files have been written to: ...

Tip: After the configuration, still inside the G4SRC/build subdirectory, one can inspect/change the configuration
options before the build by bash-3.2$ ccmake . that will open the configuration settings and offers the possibility
to e.g. change values. Try this out, especially its advanced mode using the t key to see the large number of configuration
options that Geant4 provides.

After the successful configuration (i.e. receiving no configuration errors above), one can easily build and install the
Geant4 toolkit now as (-j6 building parallel with 6 threads):

bash-3.2$ make -j6
[0%] Creating directories for 'G4INCL'
[0%] Creating directories for 'G4SAIDDATA'
[0%] Creating directories for 'G4ENSDFSTATE'
[1%] Creating directories for 'G4PII'
[1%] Creating directories for 'RealSurface'
[1%] Creating directories for 'G4ABLA'
[1%] Performing download step (download, verify and extract) for 'G4SAIDDATA'
[1%] Performing download step (download, verify and extract) for 'G4PII'
[1%] Performing download step (download, verify and extract) for 'G4ENSDFSTATE'
[1%] Performing download step (download, verify and extract) for 'G4ABLA'
[1%] Performing download step (download, verify and extract) for 'G4INCL'
[1%] Performing download step (download, verify and extract) for 'RealSurface'
-- Downloading...

...

[100%] Building CXX object source/CMakeFiles/G4physicslists.dir/physics_lists/util/src/
→˓G4HadProcesses.cc.o
[100%] Building CXX object source/CMakeFiles/G4physicslists.dir/physics_lists/util/src/
→˓G4PhysListUtil.cc.o
[100%] Building CXX object source/CMakeFiles/G4physicslists.dir/physics_lists/util/src/
→˓G4WarnPLStatus.cc.o
[100%] Linking CXX shared library ../BuildProducts/lib/libG4physicslists.dylib
[100%] Built target G4physicslists

then after the successful build, install the Geant4 toolkit under the previously set $G4INSTALL location as:

11

bash-3.2$ make install
[0%] Built target G4ENSDFSTATE
[0%] Built target G4INCL
[0%] Built target G4ABLA
[1%] Built target G4SAIDDATA
[2%] Built target G4PII
[2%] Built target RealSurface
[2%] Built target G4NDL
[2%] Built target G4PARTICLEXS

...

-- Installing: ...

This last step above only makes all the headers, configuration files, libraries that have been just built to the location
specified during the configuration. Before starting to use the freshly installed Geant4 toolkit on our system, one needs
to make sure that all the related environment settings are done (e.g. setting PATH, *_LIBRARY_PATH or other Geant4
specific environment variables such as data set location, etc.). All the details are given in the Postinstall Setup of the
Installation Guide. This can be done by using the script provided after the installation under $G4INSTALL/bin as:

bash-3.2$ source $G4INSTALL/bin/geant4.sh
bash-3.2$ echo $G4LEDATA
/what/you/set/as/install/location/share/Geant4-11.0.1/data/G4EMLOW8.0

This above includes writing out one of the Geant4 specific environment variable value just for cross checking that
everything is set as we expect.

Try an example application

As an example, we can build and execute one of the Geant4 example applications that are delivered by the toolkit. They
can be found under the $G4SRC/examples. We can try one of the basic examples like /basic/B1. So first change the
directory to this location and create a build subdirectory there and entering:

bash-3.2$ cd $G4SRC/examples
bash-3.2$ ls
CMakeLists.txt README advanced novice
GNUmakefile README.HowToRun basic
History README.HowToRunMT extended
bash-3.2$ cd basic/
bash-3.2$ ls
B1 B3 B5 GNUmakefile README
B2 B4 CMakeLists.txt History
bash-3.2$ cd B1
bash-3.2$ ls
CMakeLists.txt History exampleB1.cc exampleB1.out init_vis.mac run2.
→˓mac vis.mac
GNUmakefile README exampleB1.in include run1.mac src
bash-3.2$ mkdir build
bash-3.2$ cd build/

Then the build of the example can be configured by using CMake as:

12

https://geant4-userdoc.web.cern.ch/UsersGuides/InstallationGuide/html/postinstall.html
https://geant4-userdoc.web.cern.ch/UsersGuides/InstallationGuide/html/
https://geant4-userdoc.web.cern.ch/UsersGuides/InstallationGuide/html/

bash-3.2$ cmake ../ -DGeant4_DIR=$G4INSTALL/lib/Geant4-11.0.1/
-- The C compiler identification is GNU 10.2.0
-- The CXX compiler identification is GNU 10.2.0
-- Checking whether C compiler has -isysroot
-- Checking whether C compiler has -isysroot - yes

...

-- Generating done
-- Build files have been written to: ...

Note, that as before, CMake requires the location of the top level CMakeLists.txt of the project and the location of
the Geant4 toolkit CMake configuration file, that has been installed under the $G4INSTALL/lib/Geant4-11.0.1/
location. This latter must be provided through the Geant4_DIR CMake configuration option as shown above. One
can export this location into an environmental variable (e.g. export G4COMP=$G4INSTALL/lib/Geant4-11.0.1/)
then the above configuration can be shorten as -DGeant4_DIR=$G4COMP. This latter is done in the provided Virtual
Machine that we will discuss below.

Following the successful configuration phase, the example can be built as:

bash-3.2$ make -j6
Scanning dependencies of target exampleB1
[37%] Building CXX object CMakeFiles/exampleB1.dir/src/DetectorConstruction.cc.o
[37%] Building CXX object CMakeFiles/exampleB1.dir/exampleB1.cc.o
[37%] Building CXX object CMakeFiles/exampleB1.dir/src/ActionInitialization.cc.o
[75%] Building CXX object CMakeFiles/exampleB1.dir/src/EventAction.cc.o
[75%] Building CXX object CMakeFiles/exampleB1.dir/src/RunAction.cc.o
[75%] Building CXX object CMakeFiles/exampleB1.dir/src/PrimaryGeneratorAction.cc.o
[87%] Building CXX object CMakeFiles/exampleB1.dir/src/SteppingAction.cc.o
[100%] Linking CXX executable exampleB1
[100%] Built target exampleB1

then execute the simulation by using one of the provided Geant4 macro file (don’t care about the details now, we will
become familiar will all the details during this week):

bash-3.2$./exampleB1 run1.mac

################################
!!! G4Backtrace is activated !!!
################################

**
Geant4 version Name: geant4-11-00-patch-01 [MT] (8-March-2022)
<< in Multi-threaded mode >>

Copyright : Geant4 Collaboration
References : NIM A 506 (2003), 250-303

: IEEE-TNS 53 (2006), 270-278
: NIM A 835 (2016), 186-225

WWW : http://geant4.org/
**

<<< Reference Physics List QBBC
(continues on next page)

13

(continued from previous page)

Visualization Manager instantiating with verbosity "warnings (3)"...
Visualization Manager initialising...
Registering graphics systems...

You have successfully registered the following graphics systems.

...

Pool ID '15G4CountedObjectIvE', size : 0.000961 MB
Number of memory pools allocated: 5; of which, static: 0
Dynamic pools deleted: 5 / Total memory freed: 0.0067 MB
==
G4Allocator objects are deleted.
UImanager deleted.
StateManager deleted.
RunManagerKernel is deleted. Good bye :)
RunManager is deleted.

So we can conclude that everything works fine!

2.4 Some notes on the Virtual Machine

As it was shown in the previous section, the Geant4 toolkit offers a large variety of configuration options. Some of
these options enables optional components or makes possible to select the preferred solution from the available set of
alternatives. The different configurations results in Geant4 installations with different functionalities and characteris-
tics. Moreover, some of the components that can be enabled or selected by such configuration options requires extra
libraries to be installed and available on the system as prerequisites. One good example is the visualisation option
offered by the toolkit. Geant4 provides several alternative Visualization Drivers from which the user can select the
preferred one at the configuration time of the toolkit build. However, the different drivers require different graphics
systems being available (e.g. OpenGL, X11, Qt, etc.). These are not only platform dependent but very often not trivial
to set.

Using the Virtual Machine(VM) ensures, that we all have access to a Geant4 toolkit installation with exactly the same
build and environmental configuration on the same platform. This greatly simplifies the common setup problem and
ensures that we are all on the same page. The Geant4 VM, that will be used throughout this course, is kindly provided by
the Laboratoire de Physique des Deux Infinis Bordeaux (LP2i Bordeaux), CNRS/IN2P3/Bordeaux University. Please
see the corresponding README for more information.

There is a default local1 user account created on your linux VM with the local1 password (the root password is
rocky8.5). The /home/local1 home directory location is set in the HOME environmental variable. There are several
Geant4 specific environmental variables set in the system. You can see them by:

localhost.localdomain:/local1 < 63 >printenv | grep G4
G4INSTALL=/usr/local/geant4.11.0.1
G4BUILD=/usr/local/src/build
G4ALPHAHPDATA=/usr/local/geant4.11.0.1/share/Geant4-11.0.1/data/G4TENDL1.4/Alpha
G4UI_USE_TCSH=1
G4SAIDXSDATA=/usr/local/geant4.11.0.1/share/Geant4-11.0.1/data/G4SAIDDATA2.0
G4INCL=/usr/local/geant4.11.0.1/share/Geant4-11.0.1/data/G4INCL1.0
G4REALSURFACEDATA=/usr/local/geant4.11.0.1/share/Geant4-11.0.1/data/RealSurface2.2
G4VIS_USE=1
G4LEVELGAMMADATA=/usr/local/geant4.11.0.1/share/Geant4-11.0.1/data/PhotonEvaporation5.7

(continues on next page)

14

https://geant4-userdoc.web.cern.ch/UsersGuides/ForApplicationDeveloper/html/Visualization/visdrivers.html?highlight=visuall
https://extra.lp2ib.in2p3.fr/G4/
https://heberge.lp2ib.in2p3.fr/G4VM/Vmware/Stable/geant4.11.0.1/readme-g4.11.0.1

(continued from previous page)

G4UI_USE_QT=1
G4LIB_USE_GDML=1
G4EXAMPLES=/usr/local/geant4.11.0.1/share/Geant4-11.0.1/examples
G4LIB=/usr/local/geant4.11.0.1/lib64
G4NEUTRONXSDATA=/usr/local/geant4.11.0.1/share/Geant4-11.0.1/data/G4PARTICLEXS4.0
G4COMP=/usr/local/geant4.11.0.1/lib64/Geant4-11.0.1
G4SRC=/usr/local/src/geant4-v11.0.1
G4VIS_BUILD_OPENGLX_DRIVER=1
G4ANALYSIS_USE=1
G4LIB_BUILD_GDML=1
G4TRITONHPDATA=/usr/local/geant4.11.0.1/share/Geant4-11.0.1/data/G4TENDL1.4/Triton
G4VIS_USE_OPENGLX=1
G4RADIOACTIVEDATA=/usr/local/geant4.11.0.1/share/Geant4-11.0.1/data/RadioactiveDecay5.6
G4NEUTRONHPDATA=/usr/local/geant4.11.0.1/share/Geant4-11.0.1/data/G4NDL4.6
G4ABALDATA=/usr/local/geant4.11.0.1/share/Geant4-11.0.1/data/G4ABLA3.1
G4ENSDFSTATEDATA=/usr/local/geant4.11.0.1/share/Geant4-11.0.1/data/G4ENSDFSTATE2.3
G4INCLUDE=/usr/local/geant4.11.0.1/include/Geant4
G4PIIDATA=/usr/local/geant4.11.0.1/share/Geant4-11.0.1/data/G4PII1.3
G4SYSTEM=Linux-g++
G4DEUTERONHPDATA=/usr/local/geant4.11.0.1/share/Geant4-11.0.1/data/G4TENDL1.4/Deuteron
G4PARTICLEXSDATA=/usr/local/geant4.11.0.1/share/Geant4-11.0.1/data/G4PARTICLEXS4.0
G4WORKDIR=/home/local1/geant4/work
G4HE3HPDATA=/usr/local/geant4.11.0.1/share/Geant4-11.0.1/data/G4TENDL1.4/He3
G4PROTONHPDATA=/usr/local/geant4.11.0.1/share/Geant4-11.0.1/data/G4TENDL1.4/Proton
G4LEDATA=/usr/local/geant4.11.0.1/share/Geant4-11.0.1/data/G4EMLOW8.0

in a terminal window. You can open a Terminal window in your system by clicking Activities -> Terminal.
Some of these, e.g. the Geant4 data set location related variables like the G4LEDATA that points to the low energy EM
physics data set location, are required to be set for the operation of Geant4. These required environmental variables are
usually set in the post-install procedure (see at the end of the Configure, build and install, part above). Other Geant4,
optional environmental variables are set in your VM system simply for convenience. These can be grouped to Geant4
(build) configuration and some location related environmental variables. The first set was used during the production
of the VM build of the toolkit to turn ON/OFF some of the Geant4 optional CMake configuration option e.g.

• G4VIS_USE_OPENGLX: that was used to turn ON/OFF the GEANT4_USE_OPENGL_X11 Geant4 optional CMake
configuration option for enabling the visualization component with OpenGL-Xlib driver (i.e. OpenGL with the
X11 X Window System).

• G4UI_USE_QT: that was used to turn ON/OFF the GEANT4_USE_QT Geant4 optional CMake configuration option
for enabling the Qt based Graphical User Interface (GUI)

The second set contains those variables that makes easy the locate the directories of the Geant4 source code (G4SRC),
install (G4INSTALL) or the configuration location (G4COMP) that needs to be provided in the required Geant4_DIR
CMake input variable when compiling any Geant4 applications. You can print any of these variable values just before
by:

localhost.localdomain:/local1 < 67 >echo $G4SRC
/usr/local/src/geant4-v11.0.1

Note, that (some of) the location related variables are the same as above when the Geant4 toolkit was built and installed
from source. Therefore, we can follow exactly the same steps (and commands but now on the VM) to configure, build
and execute the /examples/basic/B1 example application. The only difference is, that now we (the local1 user)
has nor right to modify the system. We can overcome this by simple copying the example to somewhere our user area.

15

We will use the G4WORKDIR=/home/local1/geant4/work directory throughout this course that first we make sure
that it exists, then copy the /examples/basic/B1 example application codes:

localhost.localdomain:/work < 84 >mkdir -p ~/geant4/work/
localhost.localdomain:/work < 85 >cd ~/geant4/work/
localhost.localdomain:/work < 86 >cp -r $G4SRC/examples/basic/B1 .
localhost.localdomain:/work < 87 >ls
/home/local1/geant4/work
B1/

Then we can create the build directory, configure and build the application as:

localhost.localdomain:/work < 88 >cd B1
localhost.localdomain:/B1 < 89 >mkdir build
localhost.localdomain:/B1 < 90 >cd build/
localhost.localdomain:/build < 91 >cmake ../ -DGeant4_DIR=$G4COMP
-- The C compiler identification is GNU 8.5.0
-- The CXX compiler identification is GNU 8.5.0
-- Detecting C compiler ABI info
-- Detecting C compiler ABI info - done

...

-- Build files have been written to: /home/local1/geant4/work/B1/build
localhost.localdomain:/build < 92 >make
[12%] Building CXX object CMakeFiles/exampleB1.dir/exampleB1.cc.o
[25%] Building CXX object CMakeFiles/exampleB1.dir/src/ActionInitialization.cc.o
[37%] Building CXX object CMakeFiles/exampleB1.dir/src/DetectorConstruction.cc.o
[50%] Building CXX object CMakeFiles/exampleB1.dir/src/EventAction.cc.o
[62%] Building CXX object CMakeFiles/exampleB1.dir/src/PrimaryGeneratorAction.cc.o
[75%] Building CXX object CMakeFiles/exampleB1.dir/src/RunAction.cc.o
[87%] Building CXX object CMakeFiles/exampleB1.dir/src/SteppingAction.cc.o
[100%] Linking CXX executable exampleB1
[100%] Built target exampleB1

We can run the example application just as before by ./exampleB1 run1.mac but now we also have the possibility
to execute the application with visualisation. This can be achieved by executing the application without providing any
input macro file as ./exampleB1.

Note: All above was just to become familiar with the provided VM so you are not expected to understand much
about what’s happening in the Geant4 application. Concentrate only to keep in mind some of the useful location
related environmental variables as G4SRC or G4COMP and the way they are used. You will become familiar with all the
remaining technical and toolkit related details during this course.

Tip: You might want to make sure at this point that one of your preferred editor for coding is available on the VM
system. I will use the atom editor during the course that you can install by opening the internet browser (Activities
-> Firefox or from the terminal as firefox) and typing atom.

16

2.5 Some notes on using CMake

Let me demonstrate here with a single example how CMake helps us when building a Geant4 simulation applica-
tion. Consider the following simple “Hello World!” C++ code, created and saved to our VM $HOME/geant4/work/
preli_cmake directory area into the simple ourmain.cc (that can be created by either the cat > ourmain.cc or
tee main.cc):

localhost.localdomain:/geant4-v11.0.1 < 108 >mkdir -p $HOME/geant4/work/preli_cmake
localhost.localdomain:/geant4-v11.0.1 < 109 >cd $HOME/geant4/work/preli_cmake/
localhost.localdomain:/preli_cmake < 110 >cat > ourmain.cc

#include <iostream>

int main() {

std::cout << " Hello World! " << std::endl;

return 0;
}

that we can compile and run as:

localhost.localdomain:/preli_cmake < 115 >g++ -o ourmain ourmain.cc
localhost.localdomain:/preli_cmake < 116 >./ourmain
Hello World!

Now try to use something in this simple application from the Geant4 toolkit installed on the system under the
G4INSTALL. Keeping it simple, we can declare a variable but using a Geant4 defined type, e.g. G4double from
$G4SRC/source/global/management/include/G4Types.hh, instead of the standard C++ one e.g.

#include <iostream>

// include the Geant4 header where the G4double variable defined
#include "G4Types.hh"

int main() {

// a Geant4 defined variable type (form $G4SRC/source/global/management/include/
→˓G4Types.hh)
G4double x = 1.23;

std::cout << " Hello World! " << std::endl;

return 0;
}

when we try to compile now as before, we get an error:

localhost.localdomain:/preli_cmake < 117 >g++ -o ourmain ourmain.cc
ourmain.cc:4:10: fatal error: G4Types.hh: No such file or directory
#include "G4Types.hh"

^~~~~~~~~~~~
compilation terminated.

17

simply because the compiler doesn’t know where the look for the G4Types.hh header file. We can resolve this by
simply adding the $G4INSTALL/include/Geant4 directory to the locations where the compiler looks for include
files. This can be done with the -I flag as:

localhost.localdomain:/preli_cmake < 123 >g++ -I $G4INSTALL/include/Geant4 -o ourmain␣
→˓ourmain.cc
localhost.localdomain:/preli_cmake < 124 >./ourmain
Hello World!

Cool. But what if I want to use now something that needs more than the declaration (more than the header) i.e. the
library as well? A simply example is G4cout, G4endl from the $G4SRC/source/global/management/include/
globals.hh (actually deeper but never mind, this include works fine) that is the Geant4 version of std::cout,
std::endl

#include <iostream>

// include the Geant4 header for G4cout and G4endl (also includes G4Types.hh)
#include "globals.hh"

int main() {

// a Geant4 defined variable type (form $G4SRC/source/global/management/include/
→˓G4Types.hh)
G4double x = 1.23;

// write out the variable value using G4cout
G4cout << " x = " << x << G4endl;

std::cout << " Hello World! " << std::endl;

return 0;
}

However, when compiling this like before we get an error:

localhost.localdomain:/preli_cmake < 138 >g++ -I $G4INSTALL/include/Geant4 -o ourmain␣
→˓ourmain.cc
In file included from /usr/local/geant4.11.0.1/include/Geant4/globals.hh:50,

from ourmain.cc:4:
/usr/local/geant4.11.0.1/include/Geant4/G4String.hh:117:31: error: ‘std::string_view’␣
→˓has not been declared

inline G4int compareTo(std::string_view, caseCompare mode = exact) const;

We need to make sure now that the application is linked with the required libraries, located libG4global and
libG4ptl that are under the G4INSTALL/lib64 directory. The library location can be specified as -L$G4INSTALL/
lib64 then linked as -lG4global -lG4ptl. We also need to specify the C++ standard, since Geant4 requires now
C++ standard 17, that can be done by -std=c++17. (Moreover, for some reasons having the LD_LIBRARY_PATH set
is not enough on the VM but we need to set the run-time linker path as well with -Wl,-rpath,$G4INSTALL/lib64)
So eventually all these would lead to:

localhost.localdomain:/preli_cmake < 172 >g++ -std=c++17 -I $G4INSTALL/include/Geant4 -o␣
→˓ourmain ourmain.cc -L$G4INSTALL/lib64 -Wl,-rpath,$G4INSTALL/lib64 -lG4global -lG4ptl
localhost.localdomain:/preli_cmake < 173 >./ourmain
x = 1.23

(continues on next page)

18

(continued from previous page)

Hello World!

Not negligible details, but have a look how many different libraries are under $G4INSTALL/lib64!

So just copy now the $G4SRC/examples/basic/B1/CMakeLists.txt as:

localhost.localdomain:/preli_cmake < 178 >cp $G4SRC/examples/basic/B1/CMakeLists.txt .

and edit to replace exampleB1 -> ourmain, B1 -> ours and remove the complete part copying scripts (that we
don’t have)

#--
Setup the project
cmake_minimum_required(VERSION 3.16...3.21)
project(ours)

#--
Find Geant4 package, activating all available UI and Vis drivers by default
You can set WITH_GEANT4_UIVIS to OFF via the command line or ccmake/cmake-gui
to build a batch mode only executable
#
option(WITH_GEANT4_UIVIS "Build example with Geant4 UI and Vis drivers" ON)
if(WITH_GEANT4_UIVIS)
find_package(Geant4 REQUIRED ui_all vis_all)

else()
find_package(Geant4 REQUIRED)

endif()

#--
Setup Geant4 include directories and compile definitions
Setup include directory for this project
#
include(${Geant4_USE_FILE})
include_directories(${PROJECT_SOURCE_DIR}/include)

#--
Locate sources and headers for this project
NB: headers are included so they will show up in IDEs
#
file(GLOB sources ${PROJECT_SOURCE_DIR}/src/*.cc)
file(GLOB headers ${PROJECT_SOURCE_DIR}/include/*.hh)

#--
Add the executable, and link it to the Geant4 libraries
#
add_executable(ourmain ourmain.cc ${sources} ${headers})
target_link_libraries(ourmain ${Geant4_LIBRARIES})

#--
For internal Geant4 use - but has no effect if you build this
example standalone
#
add_custom_target(ours DEPENDS ourmain)

19

Then we can use this, to compile now our example easily as:

localhost.localdomain:/preli_cmake < 183 >mkdir build
localhost.localdomain:/preli_cmake < 184 >cd build
localhost.localdomain:/build < 185 >cmake ../ -DGeant4_DIR=$G4COMP
-- The C compiler identification is GNU 8.5.0
-- The CXX compiler identification is GNU 8.5.0

...

-- Build files have been written to: /home/local1/geant4/work/preli_cmake/build

then we can simply compile and run our application as:

localhost.localdomain:/build < 188 >make
[50%] Building CXX object CMakeFiles/ourmain.dir/ourmain.cc.o
[100%] Linking CXX executable ourmain
[100%] Built target ourmain
localhost.localdomain:/build < 189 >./ourmain
x = 1.23
Hello World!

Just so much simpler since CMake (and the Geant4 CMake configuration file) can help us. We can inspect the
$G4INSTALL/lib64/Geant4-11.0.1/Geant4Config.cmake Geant4 CMake configuration file especially the top
to see what will be set:

localhost.localdomain:/geant4 < 194 >less $G4INSTALL/lib64/Geant4-11.0.1/Geant4Config.
→˓cmake

and we can even write out the content of Geant4_LIBRARIES from our new CMakeLists.txt file, after the Geant4
libraries are already found (since that will be the point when the Geant4 configuration file will be processed):

...

find_package(Geant4 REQUIRED)
endif()

message("---> Look at me, we print out the value of Geant4_LIBRARIES: ${Geant4_LIBRARIES}
→˓")

Then reconfiguring our build prints (at a point):

localhost.localdomain:/build < 211 >cmake ../ -DGeant4_DIR=$G4COMP
---> Look at me, we print out the value of Geant4_LIBRARIES: Geant4::G4Tree;Geant4::G4FR;
→˓Geant4::G4GMocren;Geant4::G4visHepRep;Geant4::G4RayTracer;Geant4::G4VRML;Geant4::
→˓G4OpenGL;Geant4::G4gl2ps;Geant4::G4visQt3D;Geant4::G4vis_management;Geant4::G4modeling;
→˓Geant4::G4interfaces;Geant4::G4persistency;Geant4::G4analysis;Geant4::G4error_
→˓propagation;Geant4::G4readout;Geant4::G4physicslists;Geant4::G4run;Geant4::G4event;
→˓Geant4::G4tasking;Geant4::G4tracking;Geant4::G4parmodels;Geant4::G4processes;Geant4::
→˓G4digits_hits;Geant4::G4track;Geant4::G4particles;Geant4::G4geometry;Geant4::
→˓G4materials;Geant4::G4graphics_reps;Geant4::G4intercoms;Geant4::G4global;Geant4::
→˓G4tools;Geant4::G4zlib;Geant4::G4ptl;Geant4::G4UIVisDefinitions
-- Configuring done
-- Generating done
-- Build files have been written to: /home/local1/geant4/work/preli_cmake/build

20

I hope this helps to understand how using CMake can help us to configure and build our applications especially using
such complex softwares as the Geant4 toolkit.

21

Part II

Application Documentation

3 C++ interface demonstrator

Code documentation of the simply C++ interface demonstrator. You can find the corresponding codes under the
applications/preliminaries/cpp-interface.

class VShape2D
Interface, i.e. base class with a pure virtual method, for 2D shape area computations.

Author M. Novak

Date May 2022

This base class is an interface for 2D shape area computations. It has its pure virtual Area() method. Therefore,
this method must be implemented by each derived classes. This ensures, that whatever type of an actuall 2D
shape is (derived from this base class) the Area() interface method will be available. Therefore, the rest of the
code can be developed without knowing what 2D shapes will be eventually there: they will be all VShape2D
types providing their own implementation of the Area() interface method defined in this base class.

Note, that the pure virtual method makes this base class abstract, i.e. objects cannot be instantiated directly
form this base class.

Subclassed by Circle, Square

Public Functions

virtual double Area() = 0
The area computation interface method.

Example of a pure virtual method that makes this base class abstract.

Each 2D shape has an area but all computed differently depending on the actual type of the shape. This is
why it’s a pure virtual method, i.e. each derived class must implement.

inline virtual double Perimeter()
Optional perimeter computation method.

Example of a virtual method with defult implementation in the base class.

Each 2D shape has its own way of computing the perimeter just like the area. However, we decided that
actually the perimeter is not important for our algorithm in most cases of shapes. Therefore, this default
implementation is available for each derived class and will be invoked unless the concrete derived class
provides its own implementation. The derived Square class implements this method while Circle relyes
on this defult base class implementation.

22

class Square : public VShape2D
Derived class that implements the VShape2D interface for Square-s.

Author M. Novak

Date May 2022

Public Functions

inline virtual double Area() override
Actual implementation of the area computation interface method of the base class.

Square must implement the VShape2D::Area base class method since that’s a pure virtual method.

Note: The override keyword is very useful: indicates that this method implements a virtual method of
the base class so the compiler is aware of that intention.

inline virtual double Perimeter() override
The optional Perimeter interface method implementation.

class Circle : public VShape2D
Derived class that implements the VShape2D interface for Circle-s.

Author M. Novak

Date May 2022

Public Functions

inline virtual double Area() override
Actual implementation of the area computation interface method of the base class.

Circle must implement the VShape2D::Area base class method since that’s a pure virtual method.

4 Introduction

Bals lashd

Let’s ciete here the final application dosucmentaion as final application . . .

23

5 Application description

The Geant4 application, that is developed during this course, is a very simple . . . bala bal

• add image

• explain

• show the results comapring ti experiegst

6 Code documentation of yourMainApplication of the application

This section contains the automatic code documentation of the main of the application developed during the course.
Reference the main file as yourMainApplication and the main funtion as main()

This is how to reference some code documentation part now e.g. the Detector Construction and this is how to reference
a class now YourDetectorConstruction.

6.1 Code documentation: yourMainApplication

The main function of this user application.

Author M. Novak

Date December 2019

Functions

int main(int argc, char **argv)
The main function of the user application.

7 Code documentation of YourDetectorConstruction of the applica-
tion

This section contains the code documentation of the detector construction of the application developed during
the course.

7.1 The YourDetectorConstruction class

class YourDetectorConstruction : public G4VUserDetectorConstruction

Implementation of the Geant4 G4VUserDetectorConstruction mandatory interface for this user applica-
tion.

Author M. Novak

Date December 2019

The description of the application detector geometry must be implemented in the Construct() interface.

24

Public Functions

YourDetectorConstruction()

Constructor.

~YourDetectorConstruction() override
Destructor.

G4VPhysicalVolume *Construct() override
It’s interface method to construct the detector.

The base class has the Construct() (only one) pure virtual method which is invoked by the G4RunManager
when it’s Initialize() method is invoked. The Construct() method must return the G4VPhysicalVolume
pointer which represents the world volume.

Your entire detector description must be implemented here in this method.

8 Code documentation of the user action part of the application

This section contains the code documentation of all the user actions of the application developed during the course.

8.1 The mandatory interface implementations

This is the mandatory action initialization (that includes the construction and registration of the primary generator
action). An object form the action initialization implementation class must be registered in the run manager inside the
main (e.g. main() in yourMainApplication) of each application.

class YourActionInitialization : public G4VUserActionInitialization

Implementation of the Geant4 G4VUserActionInitialization mandatory interface for this user applica-
tion.

Author M. Novak

Date December 2019

All user actions (i.e. at least your implementation of the G4VUserPrimaryGeneratorAction ,that is Your-
PrimaryGeneratorAction in our case, but all optional actions) objects must be constructed and registered in the
G4RunManager through a single user action initialization object from this class.

The construction and registration of all user action objects must be implemented in the Build() interface (pure
virtual) method that is invoked by all worker threads before starting the run. The additional BuildForMaster()
virtual method of the base class is invoked by only the master thread. No other user actions than implementation
of the G4UserRunAction should be constructed here!

According to the above, we construct and register only YourRunAction object in the BuildForMaster() interface
method while all the user actions are constructed and created in the Build() method. This is because, the master
run action object YourRunAction::GenerateRun() method is invoked by the master at the beginning of the run to
create its own YourRun object. The same is done for each workers. Hoever, unlike the individual worker YourRun
objects, that are used during the simulatio to collect thread-local infomation, the single master YourRun object is
untouched till the end of the run. It will be used only to collect/merge the individual thread-local run infomation
into one global YourRun obejct after all worker finished the simulation.

25

Public Functions

void Build() const override
(Pure) Virtual method to be implemented by the user to instantiate User Action class objects.

Each application must implemnted this method. It is invoked by all workers at the beginning of the run
to instantiate all (worker) thread-local user action objects. At least the construction and registration of the
primary generation action must be implemented in this method.

void BuildForMaster() const override
Virtual method to be implemented by the user to instantiate User RunAction.

This method is invoked only by the master and only your implementation of the G4VUserRunAction should
be constructed and registered here (see the class description why).

class YourPrimaryGeneratorAction : public G4VUserPrimaryGeneratorAction

Implementation of the Geant4 G4VUserPrimaryGeneratorAction mandatory interface for this user appli-
cation.

Author M. Novak

Date December 2019

Generation of primary particles of the application must be implemented in the GeneratePrimaries() interface.
This interface method is invoked by the G4RunManager::GenerateEvent() whenever a new event is needed.

The construction and registration of the primary generator interface of the application is done in the implemen-
tation of the mandatory G4VUserActionInitialization (YourActionInitialization).

An instance of this primary generator object must be created and set in the implementation of the
G4VUserActionInitialization::Build() interface method. This is done in YourActionInitialization::Build() in this
application.

Note: each worker thread has their own object form this primary generator since YourActionInitializa-
tion::Build() interface method is invoked by each thread.

Note: we keep the pointer to the detector object in order to be able to set the primary generator gun position
dynamically. This can be done anytime by invoking the UpdatePosition() method.

Public Functions

void GeneratePrimaries(G4Event *evt) override
It’s interface method to generate primary particles.

(Pure) virtual method to generata primary events. This method will be invoked from the G4RunManager
whenever a new event is required.

Parameters [in:out] – evt Pointer to the G4Event object to be filled with primaries.

void UpdatePosition()
Public method to set the position of the particle gun.

The detector might be resized by the user between its construction and the start of the run. This method
can be invoked (form YourRunAction::BeginOfRunAction()) at the begin of the run in order to ensure the
proper position of the gun.

26

8.2 Some of the optional interface implementations

class YourRun : public G4Run

Implementation of Geant4 G4Run for this user application.

Author M. Novak

Date December 2019

The run of your application usually encapsulates all infomation that you would like to collect during the simula-
tion. Each thread will have their own object form this run class that is generated before the simulation by the indi-
vidual threads itself simply calling the G4RunAction::GenerateRun() (i.e. YourRunAction::GenerateRun())
method of the G4RunAction (i.e. YourRunAction) object that was constructed and registered for the given thread
(in YourActionInitialization::Build() or YourActionInitialization::BuildForMaster() methods for the workers or
for the master respecively).

While the run objects of the worker threads are used during the simulation to collect thread-local data, the run
object generated by the master, is not used during the simulation. This latter is used only at the end of the run and
only to collect all thread-local run data into one gloabl run object. This is done, by calling the Merge() method
of this class that should contain the implementation how run data can be added/merged.

Note: for this application we will implement a simple histogram class. The only reason why we do this is to
demonstrait the good practice regarding the implementation of objects, that are used inside the run object, shoudl
follow (e.g. easily "mergable").

Public Functions

void Merge(const G4Run *run) override
Virtual method to be implemented to define the way of merging the underlying (thread local) Run global
data structures into one global instance.

This method will be invoked by the master on its own run object (YourRun) on each of the worker, i.e.
thread local, run (YourRun) objects passing by their pointer as the input argument.

Parameters run – [in] Pointer to a run (YourRun) obejct that needs to be merged to this run
object.

class YourRunAction : public G4UserRunAction

Implementation of the Geant4 G4UserRunAction optional interface for this user application.

Author M. Novak

Date December 2019

This interface gives the possibility for interacting with the simulation before the simulation of the first (Begi-
nOfRunAction()) and after the last (EndOfRunAction()) event. The additional GenerateRun() virtual method can
be used to generate YourRun object, i.e. your implementation of G4Run, both for the master and for the individual
worker threads.

Note: this is the only user action that can be constructed and registered in YourActionInitializa-
tion::BuildForMaster().

27

Public Functions

G4Run *GenerateRun() override
Virtual method to generate YourRun for each threads.

void BeginOfRunAction(const G4Run *run) override
Virtial method that is called by the RunManager before the first event starts.

This is the point where we usually perfrom some final actions needed to be done before the simulation,
constructing some run global objects (e.g. for analysis) or we will ensure here that the primary generator
gun position is correct.

Parameters run – [in] Pointer to the G4Run (YourRun) object that has been generated for this
thread.

void EndOfRunAction(const G4Run *run) override
Virtial method that is called by the RunManager after the last event simulation is completed.

This is the point where we usually perfrom some actions needed to be done when the simulation is com-
pleted, performing final computation and writing the simulation results usually happens here (we do this
here by calling the corresponding method of YourRun).

Parameters run – [in] Pointer to the G4Run (YourRun) object that has been generated for this
thread.

class YourEventAction : public G4UserEventAction

Implementation of the Geant4 G4UserEventAction optional interface for this user application.

Author M. Novak

Date December 2019

This interface gives the possibility for interacting with the simulation before (BeginOfEventAction()) and after
(EndOfEventAction()) the simulation of each event.

Public Functions

void BeginOfEventAction(const G4Event *evt) override
Virtial method that is called by the RunManager before the start of each event.

This is the point where we usually reset some local variables that are used to accumulate information during
the simnulation of a given event.

Parameters evt – [in] Pointer to the G4Event object that will be simulated now.

void EndOfEventAction(const G4Event *evt) override
Virtial method that is called by the RunManager after the end of each event.

This is the point where we usually propagate to upper level (i.e. usualy to the run (YourRun) obejct) local
infomation, that has been collected during the simnulation of a given event.

Parameters evt – [in] Pointer to the G4Event object that simulated has just been completed.

class YourSteppingAction : public G4UserSteppingAction

Implementation of the Geant4 G4UserSteppingAction optional interface for this user application.

Author M. Novak

28

Date December 2019

This interface gives the possibility for interacting with the simulation after the complition of the individual
simulation steps in its UserSteppingAction() method.

Public Functions

void UserSteppingAction(const G4Step *step) override
Interface metho dthat is called after each simulation steps.

We do all the fine grane infomation collection in this method that infomation are usually propagated to an
auuper elevel, e.g. YourEventAction.

Warning: You need to be careful here! Since this method is invoked after each individual simulation
step, this is a very perfomance critical point.

Parameters step – [in] Pointer to the G4Step object that has just been completed.

29

9 Bibliography

30

10 Indices and tables

• genindex

• modindex

• search

31

Index

Symbols
*_LIBRARY_PATH, 12
./exampleB1, 16
./exampleB1 run1.mac, 16
/home/local1, 14
-DGeant4_DIR=$G4COMP, 13

A
Activities -> Firefox, 16
Activities -> Terminal, 15
atom, 16

B
B1 -> ours, 19
bash-3.2$ ccmake ., 11

C
Circle (C++ class), 23
Circle::Area (C++ function), 23

E
environment variable

*_LIBRARY_PATH, 12
./exampleB1, 16
./exampleB1 run1.mac, 16
/home/local1, 14
-DGeant4_DIR=$G4COMP, 13
Activities -> Firefox, 16
Activities -> Terminal, 15
atom, 16
B1 -> ours, 19
bash-3.2$ ccmake ., 11
environment variables: G4INSTALL, 3
exampleB1 -> ourmain, 19
export G4COMP=$G4INSTALL/lib/Geant4-11.0.1/,

13
firefox, 16
G4COMP, 15, 16
G4INSTALL, 10, 15
G4LEDATA, 15
G4SRC, 10, 15, 16
G4UI_USE_QT, 15
G4VIS_USE_OPENGLX, 15
Geant4_LIBRARIES, 20
GEANT4_USE_OPENGL_X11, 15
GEANT4_USE_QT, 15
HOME, 14
LD_LIBRARY_PATH, 18
libG4global, 18
libG4ptl, 18

local1, 14, 15
PATH, 12
rocky8.5, 14
Terminal, 15

environment variables: G4INSTALL, 3
exampleB1 -> ourmain, 19
export G4COMP=$G4INSTALL/lib/Geant4-11.0.1/,

13

F
firefox, 16

G
G4COMP, 15, 16
G4INSTALL, 10, 15
G4LEDATA, 15
G4SRC, 10, 15, 16
G4UI_USE_QT, 15
G4VIS_USE_OPENGLX, 15
Geant4_LIBRARIES, 20
GEANT4_USE_OPENGL_X11, 15
GEANT4_USE_QT, 15

H
HOME, 14

L
LD_LIBRARY_PATH, 18
libG4global, 18
libG4ptl, 18
local1, 14, 15

M
main (C++ function), 24

P
PATH, 12

R
rocky8.5, 14

S
Square (C++ class), 22
Square::Area (C++ function), 23
Square::Perimeter (C++ function), 23

T
Terminal, 15

32

V
VShape2D (C++ class), 22
VShape2D::Area (C++ function), 22
VShape2D::Perimeter (C++ function), 22

Y
YourActionInitialization (C++ class), 25
YourActionInitialization::Build (C++ function),

26
YourActionInitialization::BuildForMaster

(C++ function), 26
YourDetectorConstruction (C++ class), 24
YourDetectorConstruction::~YourDetectorConstruction

(C++ function), 25
YourDetectorConstruction::Construct (C++

function), 25
YourDetectorConstruction::YourDetectorConstruction

(C++ function), 25
YourEventAction (C++ class), 28
YourEventAction::BeginOfEventAction (C++

function), 28
YourEventAction::EndOfEventAction (C++ func-

tion), 28
YourPrimaryGeneratorAction (C++ class), 26
YourPrimaryGeneratorAction::GeneratePrimaries

(C++ function), 26
YourPrimaryGeneratorAction::UpdatePosition

(C++ function), 26
YourRun (C++ class), 27
YourRun::Merge (C++ function), 27
YourRunAction (C++ class), 27
YourRunAction::BeginOfRunAction (C++ function),

28
YourRunAction::EndOfRunAction (C++ function), 28
YourRunAction::GenerateRun (C++ function), 28
YourSteppingAction (C++ class), 28
YourSteppingAction::UserSteppingAction (C++

function), 29

33

	I Course Material
	Introduction
	What is Geant4?
	Our goal in the next few days
	Format

	Preliminaries
	Our most important object oriented concept: interface
	Some useful unix commands
	Geant4 installation
	Obtain the source
	Configure, build and install
	Try an example application

	Some notes on the Virtual Machine
	Some notes on using CMake

	II Application Documentation
	C++ interface demonstrator
	Introduction
	Application description
	Code documentation of yourMainApplication of the application
	Code documentation: yourMainApplication

	Code documentation of YourDetectorConstruction of the application
	The YourDetectorConstruction class

	Code documentation of the user action part of the application
	The mandatory interface implementations
	Some of the optional interface implementations

	Bibliography
	Indices and tables
	Index

